3.4.71 \(\int \frac {\sec ^9(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [371]

Optimal. Leaf size=73 \[ \frac {8 i a^2 \sec ^9(c+d x)}{99 d (a+i a \tan (c+d x))^{9/2}}+\frac {2 i a \sec ^9(c+d x)}{11 d (a+i a \tan (c+d x))^{7/2}} \]

[Out]

8/99*I*a^2*sec(d*x+c)^9/d/(a+I*a*tan(d*x+c))^(9/2)+2/11*I*a*sec(d*x+c)^9/d/(a+I*a*tan(d*x+c))^(7/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {3575, 3574} \begin {gather*} \frac {8 i a^2 \sec ^9(c+d x)}{99 d (a+i a \tan (c+d x))^{9/2}}+\frac {2 i a \sec ^9(c+d x)}{11 d (a+i a \tan (c+d x))^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^9/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(((8*I)/99)*a^2*Sec[c + d*x]^9)/(d*(a + I*a*Tan[c + d*x])^(9/2)) + (((2*I)/11)*a*Sec[c + d*x]^9)/(d*(a + I*a*T
an[c + d*x])^(7/2))

Rule 3574

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*b*(
d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2
, 0] && EqQ[Simplify[m/2 + n - 1], 0]

Rule 3575

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Dist[a*((m + 2*n - 2)/(m + n - 1)), Int[(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0]
 && IGtQ[Simplify[m/2 + n - 1], 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\sec ^9(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac {2 i a \sec ^9(c+d x)}{11 d (a+i a \tan (c+d x))^{7/2}}+\frac {1}{11} (4 a) \int \frac {\sec ^9(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx\\ &=\frac {8 i a^2 \sec ^9(c+d x)}{99 d (a+i a \tan (c+d x))^{9/2}}+\frac {2 i a \sec ^9(c+d x)}{11 d (a+i a \tan (c+d x))^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.63, size = 80, normalized size = 1.10 \begin {gather*} \frac {2 \sec ^7(c+d x) (\cos (2 (c+d x))-i \sin (2 (c+d x))) (-13 i+9 \tan (c+d x))}{99 a^2 d (-i+\tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^9/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(2*Sec[c + d*x]^7*(Cos[2*(c + d*x)] - I*Sin[2*(c + d*x)])*(-13*I + 9*Tan[c + d*x]))/(99*a^2*d*(-I + Tan[c + d*
x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 126 vs. \(2 (61 ) = 122\).
time = 0.81, size = 127, normalized size = 1.74

method result size
default \(\frac {2 \left (64 i \left (\cos ^{6}\left (d x +c \right )\right )+64 \sin \left (d x +c \right ) \left (\cos ^{5}\left (d x +c \right )\right )-8 i \left (\cos ^{4}\left (d x +c \right )\right )+24 \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right )-52 i \left (\cos ^{2}\left (d x +c \right )\right )-32 \sin \left (d x +c \right ) \cos \left (d x +c \right )+9 i\right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{99 d \cos \left (d x +c \right )^{5} a^{3}}\) \(127\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/99/d*(64*I*cos(d*x+c)^6+64*sin(d*x+c)*cos(d*x+c)^5-8*I*cos(d*x+c)^4+24*sin(d*x+c)*cos(d*x+c)^3-52*I*cos(d*x+
c)^2-32*sin(d*x+c)*cos(d*x+c)+9*I)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)^5/a^3

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 626 vs. \(2 (57) = 114\).
time = 0.48, size = 626, normalized size = 8.58 \begin {gather*} -\frac {2 \, {\left (-13 i \, \sqrt {a} - \frac {34 \, \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {46 i \, \sqrt {a} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {174 \, \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {54 i \, \sqrt {a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {394 \, \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {22 i \, \sqrt {a} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {550 \, \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {550 \, \sqrt {a} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} + \frac {22 i \, \sqrt {a} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} - \frac {394 \, \sqrt {a} \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}} + \frac {54 i \, \sqrt {a} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}} - \frac {174 \, \sqrt {a} \sin \left (d x + c\right )^{13}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{13}} + \frac {46 i \, \sqrt {a} \sin \left (d x + c\right )^{14}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{14}} - \frac {34 \, \sqrt {a} \sin \left (d x + c\right )^{15}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{15}} + \frac {13 i \, \sqrt {a} \sin \left (d x + c\right )^{16}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{16}}\right )} {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}^{\frac {5}{2}}}{99 \, {\left (a^{3} - \frac {8 \, a^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {28 \, a^{3} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {56 \, a^{3} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {70 \, a^{3} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {56 \, a^{3} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} + \frac {28 \, a^{3} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}} - \frac {8 \, a^{3} \sin \left (d x + c\right )^{14}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{14}} + \frac {a^{3} \sin \left (d x + c\right )^{16}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{16}}\right )} d {\left (-\frac {2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1\right )}^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-2/99*(-13*I*sqrt(a) - 34*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 46*I*sqrt(a)*sin(d*x + c)^2/(cos(d*x + c)
+ 1)^2 - 174*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 54*I*sqrt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 -
394*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 22*I*sqrt(a)*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 550*sqrt(
a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 550*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 + 22*I*sqrt(a)*sin(d*
x + c)^10/(cos(d*x + c) + 1)^10 - 394*sqrt(a)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11 + 54*I*sqrt(a)*sin(d*x + c
)^12/(cos(d*x + c) + 1)^12 - 174*sqrt(a)*sin(d*x + c)^13/(cos(d*x + c) + 1)^13 + 46*I*sqrt(a)*sin(d*x + c)^14/
(cos(d*x + c) + 1)^14 - 34*sqrt(a)*sin(d*x + c)^15/(cos(d*x + c) + 1)^15 + 13*I*sqrt(a)*sin(d*x + c)^16/(cos(d
*x + c) + 1)^16)*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(sin(d*x + c)/(cos(d*x + c) + 1) - 1)^(5/2)/((a^3
 - 8*a^3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 28*a^3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 56*a^3*sin(d*x + c
)^6/(cos(d*x + c) + 1)^6 + 70*a^3*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 56*a^3*sin(d*x + c)^10/(cos(d*x + c) +
 1)^10 + 28*a^3*sin(d*x + c)^12/(cos(d*x + c) + 1)^12 - 8*a^3*sin(d*x + c)^14/(cos(d*x + c) + 1)^14 + a^3*sin(
d*x + c)^16/(cos(d*x + c) + 1)^16)*d*(-2*I*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^2/(cos(d*x + c) + 1)
^2 - 1)^(5/2))

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 117 vs. \(2 (57) = 114\).
time = 0.40, size = 117, normalized size = 1.60 \begin {gather*} -\frac {64 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-11 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - 2 i\right )}}{99 \, {\left (a^{3} d e^{\left (10 i \, d x + 10 i \, c\right )} + 5 \, a^{3} d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, a^{3} d e^{\left (6 i \, d x + 6 i \, c\right )} + 10 \, a^{3} d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-64/99*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-11*I*e^(2*I*d*x + 2*I*c) - 2*I)/(a^3*d*e^(10*I*d*x + 10*I*c
) + 5*a^3*d*e^(8*I*d*x + 8*I*c) + 10*a^3*d*e^(6*I*d*x + 6*I*c) + 10*a^3*d*e^(4*I*d*x + 4*I*c) + 5*a^3*d*e^(2*I
*d*x + 2*I*c) + a^3*d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**9/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^9/(I*a*tan(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Mupad [B]
time = 6.38, size = 91, normalized size = 1.25 \begin {gather*} \frac {64\,{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,11{}\mathrm {i}+2{}\mathrm {i}\right )\,\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}}{99\,a^3\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^9*(a + a*tan(c + d*x)*1i)^(5/2)),x)

[Out]

(64*exp(- c*1i - d*x*1i)*(exp(c*2i + d*x*2i)*11i + 2i)*(a - (a*(exp(c*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d*
x*2i) + 1))^(1/2))/(99*a^3*d*(exp(c*2i + d*x*2i) + 1)^5)

________________________________________________________________________________________